Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Helmer-Citterich, Manuela (Ed.)MicroRNAs (miRNAs) play crucial roles in gene regulation. Most studies focus on mature miRNAs, which leaves many unknowns about primary miRNAs (pri-miRNAs). To fill the gap, we attempted to model the expression of pri-miRNAs in 1829 primary cell types, cell lines, and tissues in this study. We demonstrated that the expression of pri-miRNAs can be modeled well by the expression of specific sets of mRNAs, which we termed their associated mRNAs. These associated mRNAs differ from their corresponding target mRNAs and are enriched with specific functions. Most associated mRNAs of a miRNA are shared across conditions, while on average, about one-fifth of the associated mRNAs are condition-specific. Our study shed new light on understanding miRNA biogenesis and general gene transcriptional regulation.more » « less
-
El_Allali, Achraf (Ed.)With mutations constantly accumulating in bacterial genomes, it is unclear whether the previously identified bacterial strains are really present in an extant sample. To address this question, we did a case study on the known strains of the bacterial speciesS.aureusandS.epidermisin 68 atopic dermatitis shotgun metagenomic samples. We evaluated the likelihood of the presence of all sixteen known strains predicted in the original study and by two popular tools in this study. We found that even with the same tool, only two known strains were predicted by the original study and this study. Moreover, none of the sixteen known strains was likely present in these 68 samples. Our study thus indicates the limitation of the known-strain-based studies, especially those on rapidly evolving bacterial species. It implies the unlikely presence of the previously identified known strains in a current environmental sample. It also called for de novo bacterial strain identification directly from shotgun metagenomic reads.more » « less
-
Abstract Universal single-copy genes (USCGs) are widely used for species classification and taxonomic profiling. Despite many studies on USCGs, our understanding of USCGs in bacterial genomes might be out of date, especially how different the USCGs are in different studies, how well a set of USCGs can distinguish two bacterial species, whether USCGs can separate different strains of a bacterial species, to name a few. To fill the void, we studied USCGs in the most updated complete bacterial genomes. We showed that different USCG sets are quite different while coming from highly similar functional categories. We also found that although USCGs occur once in almost all bacterial genomes, each USCG does occur multiple times in certain genomes. We demonstrated that USCGs are reliable markers to distinguish different species while they cannot distinguish different strains of most bacterial species. Our study sheds new light on the usage and limitations of USCGs, which will facilitate their applications in evolutionary, phylogenomic, and metagenomic studies.more » « less
-
Abstract Hypoxia inducible factor 1 alpha (HIF1A) is a transcription factor (TF) that forms highly structural and functional protein–protein interactions with other TFs to promote gene expression in hypoxic cancer cells. However, despite the importance of these TF-TF interactions, we still lack a comprehensive view of many of the TF cofactors involved and how they cooperate. In this study, we systematically studied HIF1A cofactors in eight cancer cell lines using the computational motif mining tool, SIOMICS, and discovered 201 potential HIF1A cofactors, which included 21 of the 29 known HIF1A cofactors in public databases. These 201 cofactors were statistically and biologically significant, with 19 of the top 37 cofactors in our study directly validated in the literature. The remaining 18 were novel cofactors. These discovered cofactors can be essential to HIF1A’s regulatory functions and may lead to the discovery of new therapeutic targets in cancer treatment.more » « less
-
Abstract Cell–cell interactions (CCIs) are essential for multicellular organisms to coordinate biological processes and functions. One classical type of CCI interaction is between secreted ligands and cell surface receptors, i.e. ligand-receptor (LR) interactions. With the recent development of single-cell technologies, a large amount of single-cell ribonucleic acid (RNA) sequencing (scRNA-Seq) data has become widely available. This data availability motivated the single-cell-resolution study of CCIs, particularly LR-based CCIs. Dozens of computational methods and tools have been developed to predict CCIs by identifying LR-based CCIs. Many of these tools have been theoretically reviewed. However, there is little study on current LR-based CCI prediction tools regarding their performance and running results on public scRNA-Seq datasets. In this work, to fill this gap, we tested and compared nine of the most recent computational tools for LR-based CCI prediction. We used 15 well-studied scRNA-Seq samples that correspond to approximately 100K single cells under different experimental conditions for testing and comparison. Besides briefing the methodology used in these nine tools, we summarized the similarities and differences of these tools in terms of both LR prediction and CCI inference between cell types. We provided insight into using these tools to make meaningful discoveries in understanding cell communications.more » « less
-
Abstract Motivation MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in gene regulation and phenotype development. The identification of miRNA transcription start sites (TSSs) is critical to understand the functional roles of miRNA genes and their transcriptional regulation. Unlike protein-coding genes, miRNA TSSs are not directly detectable from conventional RNA-Seq experiments due to miRNA-specific process of biogenesis. In the past decade, large-scale genome-wide TSS-Seq and transcription activation marker profiling data have become available, based on which, many computational methods have been developed. These methods have greatly advanced genome-wide miRNA TSS annotation. Results In this study, we summarized recent computational methods and their results on miRNA TSS annotation. We collected and performed a comparative analysis of miRNA TSS annotations from 14 representative studies. We further compiled a robust set of miRNA TSSs (RSmirT) that are supported by multiple studies. Integrative genomic and epigenomic data analysis on RSmirT revealed the genomic and epigenomic features of miRNA TSSs as well as their relations to protein-coding and long non-coding genes. Contact xiaoman@mail.ucf.edu, haihu@cs.ucf.edumore » « less
-
Abstract Shotgun sequencing is routinely employed to study bacteria in microbial communities. With the vast amount of shotgun sequencing reads generated in a metagenomic project, it is crucial to determine the microbial composition at the strain level. This study investigated 20 computational tools that attempt to infer bacterial strain genomes from shotgun reads. For the first time, we discussed the methodology behind these tools. We also systematically evaluated six novel-strain-targeting tools on the same datasets and found that BHap, mixtureS and StrainFinder performed better than other tools. Because the performance of the best tools is still suboptimal, we discussed future directions that may address the limitations.more » « less
An official website of the United States government
